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ABSTRACT

We present measurements of a population of matched radio sources at 1.4 and 5 GHz down to a
flux limit of 1.5 mJy in 7 sq. degs. of the NOAO Deep Field South. We find a significant fraction
of sources with inverted spectral indices that all have 1.4 GHz fluxes less than 10 mJy, and are
therefore too faint to have been detected and included in previous radio source count models that are
matched at multiple frequencies. Combined with the matched source population at 1.4 and 5 GHz
in 1 sq. deg. in the ATESP survey, we update models for the 5 GHz differential number counts
and distributions of spectral indices in 5 GHz flux bins that can be used to estimate the unresolved
point source contribution to the cosmic microwave background temperature anisotropies. We find a
shallower logarithmic slope in the 5 GHz differential counts than in previously published models for
fluxes . 100 mJy as well as larger fractions of inverted spectral indices at these fluxes. Because the
Planck flux limit for resolved sources is larger than 100 mJy in all channels, our modified number
counts yield at most a 10% change in the predicted Poisson contribution to the Planck temperature
power spectrum. For a flux cut of 5 mJy with the South Pole Telescope and a flux cut of 20 mJy with
the Atacama Cosmology Telescope we predict a ∼30% and ∼10% increase, respectively, in the radio
source Poisson power in the lowest frequency channels of each experiment relative to that predicted
by previous models.
Subject headings: cosmic background radiation – cosmological parameters – Cosmology: observations

– inflation – Surveys

1. INTRODUCTION

A main science driver for ongoing high-resolution cos-
mic microwave background (CMB) experiments is to
measure the amplitdue and tilt of the power spectrum
of primordial density fluctuations and thereby constrain
models of cosmic inflation. On large angular scales (mul-
tipoles ` . 1000) the power spectrum of CMB tempera-
ture anisotropies is directly related to the primordial den-
sity power spectrum by well-understood baryon physics.
However, on smaller angular scales various astrophysical
foregrounds dominate the measured temperature power
spectrum and obscure the primordial signal.

For frequencies less than about 150 GHz a domi-
nant foreground is the flux from radio-loud galaxies and
blazars that is unresolved by the CMB experiment beam
and therefore cannot be masked out (Tegmark & Efs-
tathiou 1996; Knox 1999; Scott & White 1999; Huffen-
berger et al. 2007; Colombo & Pierpaoli 2010; Millea
et al. 2011). Previous radio surveys have identified a sig-
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nificant population of sources from 1-30 GHz that have
flat or “inverted” spectral energy distributions (SEDs)
such that their flux is roughly constant or increasing
with increasing frequency (Guerra et al. 2002; Colombo
& Pierpaoli 2010; Prandoni et al. 2010) and are there-
fore potentially significant foregrounds for CMB obser-
vations. Physical models for these objects predict they
are dominated by synchroton emission from relativistic
jets in AGN (Danese et al. 1987; Toffolatti et al. 1998;
de Zotti et al. 2005, 2010; Tucci et al. 2011; Rani et al.
2011) with the large spectral indices determined either by
dominant emission from compact optically thick regions
of the jet, early or late stages of AGN evolution, or chance
variability in the source. Such physical models predict
that the SEDs of these sources should break and decline
somewhere between tens and hundreds of GHz. The flat
and inverted radio sources detected around a few GHz
should then contribute negligible flux at millimeter fre-
quency CMB observations (where infrared emission from
galactic dust becomes a problem instead).

Thermal synchroton emission from advection-
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dominated accretion flows (ADAFs) may be also be
a significant contribution to the low-frequency radio
foregrounds in CMB experiments (Perna & Di Matteo
2000; Pierpaoli & Perna 2004; Toffolatti et al. 2005).
ADAFs may also show inverted spectra up to several
tens of GHz when the emission region is signficantly
compact. Using the model of Perna & Di Matteo
(2000) and considering constraints on the source counts
from the Ryle telescope, ATCA, and WMAP surveys,
de Zotti et al. (2005) showed that the predicted dif-
ferential number counts of ADAFs at 30 GHz are at
least two orders of magnitude smaller than the blazar
counts for fluxes greater than ∼ 1 mJy (see their
Figure 14). We therefore only consider SED models for
blazars with inverted spectra and neglect any possible
(sub-dominant) contribution from ADAF sources.

Aside from CMB power spectrum measurements, radio
foregrounds are also a significant foreground for Sunyaev-
Zel’dovich measurements of galaxy clusters (Knox et al.
2004; White & Majumdar 2004; de Zotti et al. 2005; Lin
et al. 2009; Sehgal et al. 2010; Reese et al. 2011) and
for testing for non-Gaussianity in the CMB (Elsner et al.
2010; Curto et al. 2011).

As CMB experiments obtain better resolution, the
lower flux limit will decrease for resolving and remov-
ing radio sources. It is then important to character-
ize the radio source number counts and spectral indices
at fluxes below the resolved source flux cut to miti-
gate the contamination from unresolved sources. While
WMAP1 was able to remove radio point sources with
fluxes greater than 0.7 Jy, Planck2 resolves all sources
with fluxes greater than ∼ 0.2 Jy (Ade et al. 2011). The
Atacama Cosmology Telescope (ACT)3 and the South
Pole Telescope (SPT)4 are able to resolve all sources
above 20 and 5 mJy respectively (Marriage 2011; Vieira
et al. 2010). Existing models for radio source counts and
SEDs have largely been calibrated only to a flux limit of
30-100 mJy (de Zotti et al. 2005; Tucci et al. 2011), so
the models would have to be extrapolated to lower fluxes
in order to analyze these ongoing CMB experiments.

We present measurements of the population of faint
radio sources complete to 1.5 mJy at 1.4 and 5 GHz col-
lected with the Very Large Array (VLA) in 7 square de-
grees of the NOAO Deep Field South (DFS). Our sources
are matched at the two observation frequencies allowing
us to determine the spectral index for each source. To
apply our source catalogue for predicting the unresolved
point source contamination in the CMB, we compare
primarily with Tucci et al. (2011) (hereafter T11) who
present models for the number counts and SEDs of radio
sources calibrated from many different data sets. Our
data is new primarily in reaching fainter flux densities
with spectral indices of matched sources.

This paper is organized as follows. We describe our ob-
servations and the construction of our source catalogue
in Section 2. We derive new fits to the 5 GHz differen-
tial number counts of our sources and the distributions of
spectral indices in Section 3.1. We then review SED mod-
els that use the fits to the 5 GHz counts and indices as in-

1 http://map.gsfc.nasa.gov
2 http://www.esa.int/planck
3 http://www.physics.princeton.edu/act/
4 http://pole.uchicago.edu

puts for extrapolating source fluxes to higher frequencies
in Section 3.2. We show the impact of our new data and
models on the predicted high-frequency number counts
in Section 4.1 and predict the impact on measurements of
the Planck TT power spectrum in Section 4.2 We draw
conclusions about the impact of faint radio sources on
future CMB measurements in Section 5. In Appendix A
we describe a statistical model for propagating the errors
in the measured fluxes and spectral indices into the esti-
mated high-frequency differential counts and CMB Pois-
son contribution from unresolved sources. We describe
the structure of our new source catalogue in Appendix B
and present a sample of the measured source fluxes in Ta-
ble 5. The full catalogue is available for download from
the VizieR database.

2. SOURCE CATALOGUE

We present a catalogue of 359 new sources discovered
with VLA imaging in 7 square degrees of the NOAO Deep
Field South (DFS) at 1.4 and 5 GHz (see Appendix B
for a sample of the catalogue). The data reduction and
catalogue construction were performed with the same
methods as in the FIRST Survey (White et al. 1997).
The survey has a resolution of 5 arcseconds at both fre-
quencies. We include in our catalogue only sources that
are matched in the two bands. There are 700 identified
sources in the field at 1.4 GHz, so roughly half of the
sources are matched at 5 GHz to give us our 359 sources.
There are seven point sources in our 5 GHz catalogue
that are not matched at 1.4 GHz. All seven sources have
5 GHz fluxes between 1 and 5 mJy, and therefore likely
have inverted spectral indices such that the 1.4 GHz flux
is below the FIRST survey detection threshold around
1 mJy. Lacking spectral index measurements for these
seven sources, we do not include them in our subsequent
analysis. However, all our results must be interpreted
remembering that there are likely more inverted sources
near our flux limit that would further boost the differen-
tial number counts of faint point sources.

The ATESP (Prandoni et al. 2000, 2006) catalogue has
a similar resolution to ours and has 118 matched sources
in the same frequency bands over one square degree. The
ATESP catalogue is complete below 1 mJy and is there-
fore a useful complement to our catalogue. We will con-
sider both the NOAO DFS and ATESP catalogues in
tandem when fitting models for the differential number
counts and SEDs of the 5 GHz source population.

The observed fluxes and the inferred spectral indices
(defined by the relation S ∝ να where S is the flux, ν
is the frequency, and α is the spectral index) for each
of our matched sources are shown in Figure 1. There
are 27 and 9 sources with spectral indices α1.4−5 > 0.3
in the NOAO DFS and ATESP catalogues respectively,
which we label as “inverted” spectrum sources (follow-
ing a common convention). All of our inverted spectrum
sources have 1.4 GHz fluxes < 10 mJy so they would not
have been identified in earlier surveys with larger flux
limits. The sources with −0.5 < α1.4−5 ≤ 0.3 (127 in
the NOAO DFS catalogue and 55 in the ATESP cata-
logue) are labeled as “flat-spectrum” and could also po-
tentially be visible at higher frequencies. Again, we see
in the top panels of Figure 1 that the majority of our flat-
spectrum sources have 1.4 GHz fluxes below 10 mJy. As
a preliminary illustration of the potential contribution

http://map.gsfc.nasa.gov
http://www.esa.int/planck
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Figure 1. Flux in the observation bands of 1.4 and 5 GHz versus
the spectral index inferred from these bands. The bottom panels
show the fluxes extrapolated to 100 GHz using two different SED
models as described in Section 3.2. The bottom left panel uses a
simple power-law (PL) model while the bottom right panel uses a
model from T11 that has a “turnover” in the SED at ∼ 10−30 GHz.

of these source populations for high-frequency number
counts we show the extrapolated fluxes of our sources at
100 GHz using two different SED models in the bottom
panels of Figure 1. We will explain the SED models in
the next section, but note here that with both a “power-
law” (PL) SED model and an SED model with a break
or “turnover” many of our sources are predicted to have
100 GHz fluxes greater than 1 mJy and will therefore be
detectable in high-resolution CMB experiments. In our
fits to the 5 GHz differential number counts in the next
section, it will also be important to note that there is not
a strong correlation between the 5 GHz flux and α1.4−5

in Figure 1.
In Figure 2 we show the differential number counts at

1.4 GHz estimated from the NOAO DFS and ATESP cat-
alogues and compare with the fit to the number counts
published by Tegmark & Efstathiou (1996) from the
FIRST survey at 1.4 GHz (White et al. 1997), which
is claimed to be complete to S = 0.75 mJy. Both the
NOAO DFS and ATESP data match the fit well for
S & 10 mJy but the NOAO DFS data clearly gives fewer
number counts for S . 3 mJy while the ATESP counts
drop below the fit for S . 1 mJy. The incompleteness
at low flux in both catalogues is primarily caused by the
requirement to match sources at 5 GHz, which omits
steep spectrum sources at 1.4 GHz that are not detected
at 5 GHz. This selection effect is apparent in the top
left panel of Figure 1 where the minimum flux for steep-
spectrum (α1.4−5 < −0.5) is much larger than that for
flat+inverted sources.

3. MODELS FOR SOURCE COUNTS AND SPECTRAL
ENERGY DISTRIBUTIONS

In this section we describe the modifications based on
our data to the T11 models for 5 GHz number counts,
spectral index distributions, and SEDs used for extrap-
olation of the counts to higher frequencies. The key
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Figure 2. Estimated differential number counts at 1.4 GHz. The
solid line is the fit to the counts from the VLA FIRST survey at
1.5 GHz from Tegmark & Efstathiou (1996), which is complete to
0.75 mJy.

changes to the T11 model are from the extension to lower
5 GHz fluxes.

3.1. Models for 5 GHz sources

We adopt the form of the fit function from Eqn. (1)
of T11 for the 5 GHz differential number counts for
flat+inverted spectrum sources,

dNfl+inv

dS5
= n0,f

(S/S0,f )
kf

1− e−1

(
1− e−(S/S0,f )`f−kf

)
. (1)

T11 found best fit parameters n0,f = 47.4 Jy−1sr−1,
S0,f = 1.67 Jy, kf = 0.50 and `f = −0.66. Because of
the small areas covered by the NOAO DFS and ATESP
cataologues, we do not have good statistics for constrain-
ing the differential number counts at fluxes greater than
about 100 mJy. We therefore include the differential
count estimates (covering 0.1 . S . 10 Jy) presented
in the right panel of Figure 2 of T11 when deriving new
best fit parameters for the fitting function in Eqn. (1).
In T11, the steep-spectrum number counts are defined
as the difference between the dN/dS5 model of Toffolatti
et al. (1998) and Eqn. (1). Here we introduce a fit func-
tion for the steep spectrum counts that can be used to
fit our steep spectrum sources,

dNst

dS5
= n0,s

(S/S0,s)
ks

1− e−1

(
1− e−(S/S0,s)

`s−ks
)

+n1,s

(
S

1 Jy

)a1
,

(2)
where n0,s = 88 Jy−1sr−1, S0,s = 0.12 Jy, ks = 0.84,
`f = −0.49, n1,s = 10.9 Jy−1sr−1, and a1 = 0.33 fit the
steep spectrum count model reported in T11.

When fitting to the differential counts estimated from
our catalogues, we multiply Eqs. (1) and (2) by selection
functions of the form,

φ(S5;Smin, a) ≡ 1− e−(S5/Smin)a , (3)
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to account for incomplete source extraction near the lim-
iting fluxes in each catalogue. We fit separate values of
Smin and a for the NOAO DFS and ATESP catalogues.
For each catalogue, we also fit separate Smin and a val-
ues for the flat+inverted and steep spectrum samples be-
cause the flux limit of matched sources is a function of the
source spectral index (see, e.g., the skewed lower bounds
of the scatter plots in the top panels of Figure 1).

We fit new values for the flat+inverted differential
number count model in Eqn. (1) with the following pro-
cedure:

1. We create separate histograms for the 5 GHz fluxes
in the NOAO DFS and ATESP catalogues with
the optimal histogram bins chosen as prescribed
by Hogg (2008) (assuming the logarithm of the
bin widths is constant). The histogram bin val-
ues with Poisson uncertainties are our estimators
for the 5 GHz differential number counts.

2. We combine our number count estimates with those
presented in the right panel of Figure 2 in T11,
which compares the 5 GHz count estimates from
a number of surveys covering the flux range ∼
100 mJy to ∼ 10 Jy. Because our data cover a
small area, we do not have good estimates of the
number counts above ∼ 100 mJy so the data from
T11 is essential to constrain the “bend” and high-
flux slope of the fit function in Eqn. (1). Note that
we assign new Poisson uncertainties to the data
points extracted from Figure 2 in T11 according
to the number of sources in each flux bin (derived
according to the area of each survey). The uncer-
tainties assigned to our differential count estimates
and those from T11 are therefore consistent.

3. We extract samples from the joint posterior of all
the fit parameters in Eqn. (1) and Smin and a
(from Eqn. 3) for each of the NOAO DFS and
ATESP data sets using Markov Chain Monte Carlo
(MCMC) with a likelihood given by the product of
the Poisson likelihoods for each count estimate in
each flux bin for each data set (our two catalogues
and those from T11 Figure 2). We thin the MCMC
samples to obtain uncorrelated samples of the joint
parameter posterior.

4. We define the best fit parameters as the medians
of the marginal posteriors for each parameter.

Using this algorithm, the new fit parameters for Eqn. (1)
are, kf = 0.438 ± 0.0142, n0 = 46.7 ± 1.49 Jy−1sr−1,
` = -0.755 ± 0.137, S0 = 2.31 ± 0.222 Jy. Note in
particular that the addition of our data favors a much
smaller value of kf than the value of kf = 0.5 presented
in T11, which implies a larger number density of faint
sources than would be inferred by extrapolating the T11
fits to faint fluxes. The logarithm of the ratio of likeli-
hoods for our best fit parameters and those of T11 is 23.6,
indicating that our new fit is favored by the data with
strong significance. The selection function minimum flux
fits are Smin =1.48 for the NOAO DFS catalogue and
Smin =0.405 for the ATESP catalogue. We use these
fits to determine the minimum flux values when creating
simulated source catalogues in Section 3.2.

We adopt a simpler maximum-likelihood procedure
to fit the steep-spectrum count parameters defined in
Eqn. (2) for three reasons: 1) the steep spectrum sources
presented in the left panel of Figure 2 in T11 have much
larger uncertainties for constraining the fit function, 2)
our data turns out to be entirely consistent with the fit
function parameters derived from the T11 results, and
3) the steep-spectrum number counts are not important
for predicting the higher frequency counts at the CMB
frequencies we are considering in this paper. The bottom
panel in Figure 3 illustrates how our data are consistent
with the T11 result.

The distributions of spectral indices in 5 GHz flux bins
are shown in Figure 4. We make the simplifying assump-
tion that the spectral index is statistically independent
of the 5 GHz flux, which is consistent with Figure 1.
We again follow T11 and fit the histograms with sepa-
rate truncated distributions for flat+inverted (α > −0.5)
and steep (α ≤ −0.5) spectral types (shown by the red
solid lines in Figure 4). The dashed black lines in the
figure show the fits from T11 for their lowest-flux bin,
100 < S/mJy < 158. We find the distributions are
best fit by a mixture of two truncated Gaussian distri-
butions, except for the highest-flux steep-source distri-
bution, which is well-fit by a single truncated Gaussian.
The parameters of the fits in Figure 4 are given in Ta-
ble 1 along with uncertainties on the fit parameters de-
rived from the 67% conditional uncertainty interval on
the mean of the largest-index Gaussian fit in each panel
of Figure 4. In detail, we calculate uncertainties via
bootstrap resampling of each catalogue, where we also
sample the number of catalogue entries from a Poisson
distribution and then sample with replacement the cat-
alogue entries. We then fit double or single Gaussians
to each sub-sample shown in Figure 4, rank order the
fitted Gaussian means, or the larger of the two means
when two Gaussians are fit, and select the 67% confi-
dence intervals from the ordered samples. We focus on
the Gaussian means to understand the possible variation
(including Poisson uncertainties) in the inverted spectral
index distributions. It is notable for extrapolating
fluxes that our best fit distributions for the flat+inverted
spectrum sources have larger tails with positive spectral
indices than the T11 fits in their lowest flux bin.

Note that while T11 consider how source variability
can change the inferred spectral indices, their modeling
shows that variability has only a small effect on the spec-
tral index histograms. We therefore ignore the effect of
variability here.

3.2. Flux extrapolation

We will primarily use the T11 SED models for ex-
trapolating the 5GHz fluxes to higher frequencies (which
we will refer to as the “Tucci SED” model). T11 con-
sidered both many different data sets with spectral in-
dex information as well as physical models for the fre-
quency dependence of the synchroton emission from the
flat-spectrum sources to construct statistical SED mod-
els that are consistent with observed differential number
counts at frequencies from 5 to several hundred GHz.
We will show in this section that our modified fits to the
5GHz flat+inverted differential counts and the spectral
index distributions for fluxes less than 100 mJy further
improve the fits of the extrapolated differential number
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Figure 3. Observed differential number counts at 5 GHz and fits for the flat+inverted spectrum (top) and steep spectrum (bottom)
sources. The red solid lines in each panel are the fits to the NOAO DFS counts (red points and error bars) while the blue dashed lines are
the fits to the ATESP counts (blue triangles and error bars). The solid and long-dashed black lines show the fits from Tucci et al. (2011)
for the NOAO DFS and ATESP selection functions, respectively. For all data points, the error bars show the 67% confidence intervals
assuming the counts in each flux bin are Poisson distributed.

Table 1
Fit parameters for spectral index distributions.

Spectral type Flux bin [mJy] mean 1 mean 2 std. dev. 1 std. dev. 2 weight

flat+inverted (0.4,3] −0.29−0.312
−0.314 0.1830.2570.149 0.1120.1050.116 0.2950.250.313 0.4870.5560.479

flat+inverted (3,100] −0.262−0.234
−0.411 0.4280.7510.133 0.1760.2070.0597 0.460.3550.462 0.6740.8060.41

steep (0.4,3] −1.53−1.4
−1.59 −0.822−0.795

−0.844 0.1850.1780.174 − 0.0920.130.0983

steep (3,100] −0.849−0.835
−0.868 − 0.1860.1910.185 − −

counts at low fluxes with external data sets.
The Tucci SED model assumes steep-spectrum sources

follow a power-law SED (S ∝ να) with spectral indices
α1.4−5 −∆α and ∆α Gaussian distributed to model ob-
served steepening at higher frequencies (see Eqn. 9 in
T11). In the description of the steep-spectrum SED, T11
state that, “A small percentage of flattening or upturning
sources is also included.” We find that we can reproduce
their plots of extrapolated steep-spectrum source counts
by assigning 2% of our steep-spectrum sources to have
spectral indices drawn from a Gaussian distribution with
mean −0.3 and standard deviation 0.2.

We adopt the “C2Ex” model from T11 for flat-
spectrum sources (−0.5 < α1.4−5 < 0.3) that deter-
mines the distribution of break frequencies according to a
physical model of the size of the optically-thick synchro-
ton emitting region in FSRQ and BL Lac sources. The
model requires knowledge of the redshift distributions
of the sources of each type as well as the distributions
of Doppler factors that adjust the predicted flux from
a homogeneous spherically symmetric model to model

an asymmetric jet. Our sample of faint flat-spectrum
sources almost certainly has a different redshift distribu-
tion than that assumed by T11 for their high-frequency
predictions. This is because for a homogeneous source
sample, fainter fluxes imply higher redshifts, while at
fixed redshift fainter fluxes imply sources at different
evolutionary stage that will again have different redshift
distributions. However, in the absence of further infor-
mation about our catalogues, we simply use the same
distributions for the flat-spectrum break frequencies as
T11 (shown in Figure 7 of T11). This is probably not
a terrible approximation because the distributions of the
break frequencies span several orders of magnitude with
the mean following a simple scaling with 5 GHz flux and
the width determined largely by the assumed size of the
emitting region. So modifications in the assumed red-
shift distribution would yield only minor corrections in
the final predicted number counts.

For inverted spectrum sources (α1.4−5 > 0.3) T11 use
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the model,

S(ν,θ) = S0

(
ν

ν0

)α(
1− e−

(
ν
ν0

)l−α)
, (4)

where

l ∼ −A (l − l0) exp

[
−1

2

(l − l0)
2

σ2
l

]
, (5)

with l0 = −0.1 and σl = 0.53 (see Figure 9 in T11). Note
that l is therefore defined with support [−∞, l0) and l0
must be less than zero. The parameter ν0 in Eqn. (4) is
determined from the distribution of peak frequencies in
Table (3) of T11. Again we adopt the distribution for l
from T11 without modification.

The T11 SED model as applied in this paper has two
main drawbacks. First, the model requires specification
of both the distributions of “break” frequencies where
the SEDs of inverted and flat-spectrum sources turn over
as the radio emission probes different physical regions of
the source and of the distributions of the spectral indices
after the break. Second, and somewhat related, the T11
SED model has a large number of parameters with un-
specified uncertainties so that it is difficult to quantify
our confidence in the extrapolated number counts pre-
dicted with this model. For comparison then, we also
consider the physically unrealistic but simple power-law
(PL) SED model,

S̄(ν;S0, α) = S0

(
ν

ν0

)α
, (6)

with ν0 = 5 GHz. The PL model will overpredict the
number counts at frequencies larger than the typical
break frequencies for a given source type. But, the PL
model has the advantage that we can easily propagate
our uncertainty in the SED model parameters, S0 and
α, into the extrapolated number count predictions and
therefore gain some understanding about the relative un-

certainties in the number counts from the errors in the
data versus the SED model.

We propagate the uncertainty in the PL SED model
by computing the marginal posterior probability distri-
bution for the extrapolated flux of each source marginal-
izing over the SED parameters, S0 and α, and incorpo-
rating observational uncertainties in the flux likelihood
model. We describe the details of this extrapolation
method in Appendix A. The marginal posterior prob-
ability for the extrapolated flux allows for full uncer-
tainty propagation and therefore robust foreground re-
moval (conditioned on the choice of SED model). Such a
procedure becomes less useful when the available source
catalogue is an incomplete sample of the population of
sources contributing to the foregrounds and when there
are many SED parameters to marginalize over leading
to large marginal uncertainties. Our catalogues unfortu-
nately meet the former condition because of the relatively
small fraction of the sky covered (leading to a dearth of
high-flux sources observed) and the Tucci SED model
likely meets the latter condition.

Putting aside the incompleteness of our catalogues for
fluxes & 100 mJy, we predict the high-frequency number
counts with the PL SED model using the complete error
propagation methods of Appendix A. Assuming a log-
Normal likelihood for the observed fluxes, the marginal
posteriors for the extrapolated fluxes can be computed
analytically (and therefore quickly). The resulting ex-
trapolated flux confidence intervals can be used as indi-
cators of the extrapolation error when the SED model is
well-constrained.

However, with the many parameters in the Tucci SED
model that, upon marginalization, further contribute to
the extrapolated flux uncertainties, we instead use the
T11 flux extrapolation method to study the impact of
our new data on the “central” extrapolated count pre-
dictions. In T11 the differential number counts at high
frequencies are predicted by first simulating a source cat-
alogue by sampling sources from the fits to the 5 GHz
differential counts and sampling spectral indices from the
fits to the 5 GHz spectral index histograms, and then
plugging the sampled values into the SED models for
each spectral class. The extrapolated simulated fluxes
can be histogrammed to estimate the high-frequency
number counts in the same way that the observed low-
frequency number counts were estimated. Because the
predictions from any one simulated catalogue can be sub-
ject to random fluctuations (mostly at high fluxes where
the counts are low) we generate predictions for the Tucci
SED model by simulating 10 catalogues with 106 sources
each and then computing the medians of any summary
statistics of the extrapolated catalogues.

4. HIGH-FREQUENCY PREDICTIONS

We now apply the flux extrapolation methods de-
scribed in Section 3.2 to predict the high-frequency dif-
ferential number counts and Poisson contributions to the
CMB power spectrum. We consider two sets of simu-
lated catalogues for generating predictions with the Tucci
SED model. First we simulate catalogues with exactly
the same parameters as in T11 (labeled “Tucci et al.
(2011)” in the figures) but with a lower flux limit of
0.4 mJy, which is where our fit to the ATESP selection
function (see equation 3) has a value of 0.5. To reach
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this flux limit we unfairly apply the spectral index dis-
tributions from T11 for the flux bin [100,158] mJy to all
lower fluxes. Our second set of catalogues (labeled “This
work” in the figures) uses the modified dN/dS fit with
kf = 0.438 for flat+inverted sources as found in Figure 3
and the spectral index distributions fit in Figure 4 to
simulate the spectral indices of sources with fluxes lower
than the lower limit of 100 mJy in T11. As described in
Section 3.2, we use the T11 models for both our simu-
lated catalogues for the flat and inverted spectrum break
frequencies and high-frequency spectral indices.

4.1. Extrapolated number counts

To validate the differential counts model based on
our catalogues we first compare with the measured dif-
ferential counts at 15.7 GHz in the 9C and 10C sur-
veys (Davies et al. 2010) in Figure 5. The combined 10C
survey covers 12 square degrees to a flux limit of 0.5 mJy
while the 9C survey data covers several hundred square
degrees to a limit of 10 mJy. While this provides excel-
lent statistics for the estimates of the differential number
counts, the surveys only have a resolution of 30 arcsec-
onds compared to our catalogues that have a resolution
of 5 arcseconds. It is therefore possible that the number
of sources observed with 30 arcseconds resolution is ar-
tificially reduced relative to our model because resolved
sources at 5 arcseconds are merged together when they
happen to fall close together in projection on the sky.
Out of the 359 sources in our NOAO DFS catalogue, we
find 29 source pairs that lie within 30 arcseconds of each
other and 10 source triplets within a circle of 30 arc-
seconds diameter. To predict the 15.7 GHz differential
counts for 30 arcseconds resolution we randomly choose
sources to merge in our simulated catalogues so that the
fractions of merged pairs and triplets match those in the
NOAO DFS catalogue. Because of low statistics we have
made no attempt to choose sources to merge based on
any other criteria than random selection. The resulting
predicted number counts are shown by the solid blue line
labeled “This work, low-res” in Figure 5. Our model is
a much better match to the 10C survey number counts
than either the T11 model or the de Zotti et al. (2005)
model for fluxes less than 8 mJy. The better fit at faint
fluxes is mostly due to the increased 5 GHz counts from
the fit we found in Figure 3. For the fluxes from 10 mJy
to 60 mJy the 9C survey number counts fall well below all
of the model predictions, while all the models are in good
agreement with the observed counts for larger fluxes.

In Figure 6 we recreate Figure 12 from T11 to compare
our predicted differential number counts at 30 GHz with
several other surveys. The steep spectrum sources are
a small but non-negligible contribution to the number
counts at 30 GHz. The new fit to the low-flux slope of
the 5 GHz differential counts in Figure 3 and the larger
values of the spectral indices shown in Figure 4 lead to a
significant difference in the total 30 GHz counts for fluxes
between 1 and ∼ 50 mJy. Our fit leads to greater con-
sistency than the T11 model with the counts measured
by the Cosmic Background Imager (CBI) (Mason et al.
2003) and the Sunyaev-Zel’dovich Array (SZA) (Mu-
chovej et al. 2010), but is in greater disagreement with
the Green Bank Telescope (GBT) survey by Mason et al.
(2009) (all of which were previously presented and com-
pared in T11). The disagreement between our predic-
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Figure 5. Comparison of our predicted counts at 15.7 GHz with
those measured in the 9C and 10C surveys by Davies et al. (2010).
The dash-dotted green line shows our model prediction while the
solid blue line shows the same model prediction after merging
sources to be consistent with the 30 arcsecond resolution of the
9C and 10C surveys. In both cases we draw sources from our fits
to the 5 GHz counts and 1.4-5 GHz spectral index distributions
and then extrapolate the fluxes to 15.7 GHz (before merging the
sources for the solid blue line). The dashed red line instead uses the
5 GHz counts and index distribution fits provided in T11 (unfairly
applied at fluxes lower than those considered in T11). The long-
dashed purple line shows the model from de Zotti et al. (2005). The
data points are from Table 6 of Davies et al. (2010) with Poisson
error bars added.

tions and the GBT survey measurements might be ex-
plained in part by the lower resolution of 24 arcseconds
for the GBT survey as well as the targeted source selec-
tion from the NVSS. For all fluxes less than ∼ 0.1 Jy our
predicted counts are now larger than the de Zotti et al.
(2005) model (shown by the dotted green line). Also
note that our predicted number counts are significantly
larger than those of Colombo & Pierpaoli (2010) (their
Figure 5) from a simulation based on the NVSS source
catalogue.

Finally, the Atacama Cosmology Telescope
(ACT) (Marriage 2011) and the South Pole Tele-
scope (SPT) (Vieira et al. 2010) have recently presented
catalogues of resolved point sources at 148 GHz, which
we compare with our model in Figure 7. Again, our
model predicts larger number counts than the T11 and
De Zotti models for fluxes less than ∼ 50 mJy. The
uncertainty in the predicted counts from the 67% uncer-
tainty range in kf is shown by the grey shaded band in
Figure 7 and is much less than the difference between
models for S . 50 mJy. All the models are consistent
with the SPT measurements but the increased counts for
faint fluxes predicted by our model is in tension with the
lowest-flux ACT measurement. The model predictions
at 148 GHz depend sensitively on the SED model
parameters, in particular the flat-spectrum source break
frequency distribution described in T11 and Section 3.2.
So it is possible that the tension between our model
prediction and the ACT measurement indicates that
the break frequencies are really smaller than we have
modeled for the flat-spectrum sources in our catalogue
with 5 GHz fluxes less than 10 mJy. However, the
break frequencies are degenerate with the spectral
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Figure 6. Predicted differential number counts at 30 GHz using
the T11 SED model to extrapolate the modeled 5 GHz counts.
The thin lines show the steep source counts (at the bottom of the
figure), the slightly thicker lines show the flat+inverted counts,
and the thickest lines show the sum of the steep and flat+inverted
counts. The solid blue lines use our fits to the 5 GHz counts and
1.4-5 GHz spectral index distributions while the dashed red lines
use those from T11 (as in Figure ??. The dotted green line is
the model from de Zotti et al. (2005). The shaded bands showing
measurements at 33 GHz are copied from Figure 12 in T11.
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Figure 7. Predicted differential number counts at 148 GHz with
the same models as in Figs. ?? and 6. The dark grey shaded band
denotes the range of extrapolated number count predictions when
the faint slope, kf , for the flat+inverted 5 GHz number counts is
varied over its 67% confidence interval. The data points are taken
from Marriage (2011) for ACT and Vieira et al. (2010) for SPT.
The light grey shaded band shows the 95% confidence intervals for
the number counts when each source flux in the NOAO DFS and
ATESP catalogues is extrapolated using a power-law SED as de-
scribed in Appendix A. The power-law SED band is intended to
show the range of extrapolated count uncertainties when marginal-
izing over SED parameters given only the NOAO DFS and ATESP
catalogues.

indices after the break in the SED when comparing
with high-frequency number counts so we cannot make
unambiguous conclusions about the SED model from
the comparison in Figure 7.

We have also plotted the 95% confidence intervals for
the extrapolated number counts as a grey shaded band

Table 2
Predicted Poisson power for Planck lower-frequency channels.

Freq. [GHz] Scut [Jy] C` Tucci [µK2] C` This work [µK2]

30 0.48 2.8E-02 2.7E-02
44 0.58 6.6E-03 6.2E-03
70 0.48 8.2E-04 7.7E-04
100 0.34 1.6E-04 1.5E-04
143 0.21 3.3E-05 3.2E-05
217 0.18 1.5E-05 1.5E-05

in Figure 7 assuming a power-law (PL) SED model and
using the error propagation methods described in Ap-
pendix A. The confidence intervals for the PL SED model
include both uncertainties in the SED parameters and
the Poisson uncertainties from the limited size of the
NOAO DFS and ATESP catalogues (the PL SED pre-
dictions use only the NOAO DFS and ATESP catalogues
as input). When extrapolating source fluxes over such a
broad frequency range the PL SED is of course a poor
model, but we include it in Figure 7 to demonstrate the
expected modeling uncertainties for the flux extrapola-
tion. A similar error propagation for all the SED param-
eters in the Tucci model could yield even larger uncer-
tainties. But the Tucci SED model is calibrated against
many other datasets so the priors on the SED param-
eters might limit the increase in the uncertainties rela-
tive to the PL SED model when all SED parameters are
marginalized. We have left this investigation for future
work.

4.2. CMB power spectrum

As shown in, e.g., Tegmark & Efstathiou (1996); Scott
& White (1999) the Poisson contribution to the CMB
power spectrum from unresolved point sources is,

C`(ν) = g2(ν)

∫ Scut

0

S2
ν

dN

dSν
dSν , (7)

where g(ν) converts from intensity at frequency ν to
temperature in µK, and Scut is the minimum flux (in
a given channel) at which point sources can be resolved
and masked out or otherwise removed. The same radio
sources also contribute a clustering foreground to the
CMB power spectrum, but this is expected to be sub-
dominant to the Poisson power for the source intensities
we are considering here (Scott & White 1999).

In Table 2 we evaluate Eqn. (7) for the lower frequency
Planck channels using the Scut values from the ERCSC
given in Table 3 of Ade et al. (2011). We have omit-
ted predictions for the Poisson power for the 3 highest
frequency Planck channels both because the unresolved
radio sources become a sub-dominant foreground at those
frequencies and because the flux extrapolation becomes
increasingly unreliable. We show similar predic-
tions for the Poisson power for ACT and SPT in Table 3
assuming Scut = 0.005 Jy for SPT (Vieira et al. 2010)
and Scut = 0.02 Jy for ACT (Marriage 2011).

We further compare the different model predictions for
the Poisson power in Planck, ACT and SPT channels in
Figure 8. Each panel shows the predicted Poisson power
for our model and the De Zotti model, both normalized to
the prediction from the T11 model as a functions of Scut.
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Table 3
Predicted Poisson power for ACT and SPT.

Freq. [GHz] Scut [Jy] C` Tucci [µK2] C` This work [µK2]

95 0.005 2.5E-06 3.1E-06
148 0.005 6.1E-07 7.6E-07
148 0.02 2.7E-06 3.1E-06
217 0.005 3.2E-07 4.0E-07
217 0.02 1.5E-06 1.7E-06
277 0.02 1.6E-06 1.8E-06

The top 6 panels show the predictions for the six lowest-
frequency Planck channels while the bottom two panels
show predictions for the lower ACT and SPT frequencies
and Scut ranges. We have plotted only those frequency
channels that have predicted radio source Poisson power
much larger or comparable to the infrared source Poisson
power as predicted by the model from Eqn. (4) of Mil-
lea et al. (2011) (using their amplitude normalized to
Planck and SPT). We plot the predicted infrared source
Poisson power with black crosses or arrows (when out-
side the scale of the panel) only where the prediction
is comparable to or larger than the radio source Pois-
son power (i.e. the highest frequency panel for each Scut

range). The circlular points and red lines in Figure 8
show the predictions using the mean of the marginal
posterior for kf from Eqn. (1) while the blue triangles
and lines show the model from de Zotti et al. (2005).
The red shaded bands show the range of predictions for
kf values spanning the 67% confidence intervals of the
marginal posterior given the 5 GHz number count ob-
servations. The grey shaded bands are similar, but also
include the variation of the 1.4-5 GHz spectral indices of
the flat+inverted sources over their 67% confidence in-
tervals as reported in Table 1. For Planck, our model
predicts Poisson power that matches the prediction from
the T11 model to within 10% for all Scut values. This is
because our data modify the T11 model at 5 GHz only for
source fluxes . 100 mJy while the Planck Poisson power
is mostly determined by sources with fluxes just below
Scut > 100 mJy. The De Zotti model predicts higher
Poisson power than the T11 model and our model be-
cause of an excess of sources with fluxes just below Scut.
This is the reason for the different dependence on Scut of
the two models in the 70 and 100 GHz panels of Figure 8.
At the ACT and SPT frequencies in the bottom 2 panels
of Figure 8, our model predictions are consistently above
both the De Zotti and T11 models, as also indicated in
Figure 7. The excess faint sources in our catalogues pre-
dict increased Poisson power in ACT and SPT of 5-30%
relative to the T11 model, ignoring any uncertainties in
the Tucci SED model parameters.

In Figure 9 we plot the different Poisson power model
predictions in the four lowest-frequency Planck channels
compared with the temperature-temperature (TT) CMB
power spectrum (predicted with Emu CMB Schneider
et al. 2011) and the expected errors from the average
noise per pixel and beam smearing. Figure 9 makes it
clear that the Poisson contribution to the total observed
power is comparable to or sub-dominant to the noise in
each channel. While the resolution is better in higher-
frequency Planck channels, the Poisson power from mil-
limeter sources will dominate over the radio sources we

Table 4
Scalar spectral index bias from wrong

point-source model with 4
low-frequency Planck channels.

Scut [Jy] ns bias ns bias / σ(ns)

0.6 0.0080 0.55
0.4 0.0071 0.49
0.2 0.0037 0.25

are modeling. We also plot in Figure 9 the 95% confi-
dence intervals on the predicted Poisson power assuming
a PL SED derived using the methods in Appendix A. The
sizes of the uncertainties for the PL SED are comparable
to the variation in the Poisson power for the range of
Scut values in the ERCSC and are much larger than the
variation between the Tucci SED models for a fixed Scut

value.
We showed in the upper panels of Figure 8 that our

5 GHz number count measurements predict no more than
10% changes in the predicted radio source Poisson power
in any Planck channel relative to earlier models. We
now consider wether our data yield 5 GHz count mea-
surements that provide a sufficient model to remove the
bias in constraints on the scalar spectral index, ns, from
radio foregrounds in the Planck temperature power spec-
trum. We adopt the Fisher matrix formalism as de-
scribed in Huterer & Takada (2005) to predict the bias
on ns assuming our model with the 5 GHz number count
slope kf = 0.452 (our +1-σ fit value) is the “truth,” but
that our model with kf = 0.423 (our −1-σ fit value) is
used to subtract the Poisson power when analyzing the
data. For computing the Fisher matrix we use the power
spectrum noise model including the Poisson contribution
from White (1998) as well as the optimal linear estima-
tor therein for the CMB power spectrum given the five
lowest-frequency Planck channels. The inferred biases
on ns assuming the same Scut value for each channel are
shown in Table 4. The last column of the table also shows
the biases normalized by the marginal Fisher matrix 1-σ
uncertainties on ns. We marginalized over
5 other cosmological parameters (as in Schneider et al.
2011). For all Scut values, the biases on ns are smaller
than the 1-σ marginal Fisher errors. So, by this measure,
the remaining uncertainties in the 5 GHz counts fit from
our catalogues are not significant for Planck parameter
estimation (neglecting uncertainties in the SED models).

5. DISCUSSION

We have shown that a previously unconsidered popula-
tion of faint radio sources at 1.4 and 5 GHz with flat and
inverted spectral indices could significantly contribute to
the unresolved point source contamination in the power
spectrum measurements in ongoing high resolution CMB
experiments. However, the measured differential num-
ber counts of faint radio sources are not large enough to
significantly modify previous predictions for the Poisson
power in the Planck temperature power spectrum. Our
source catalogue is unique in the combination of flux sen-
sitivity to 1.5 mJy, resolution of 5 arcseconds, area cov-
ered of 7 square degrees and matching of sources in the
1.4 and 5 GHz frequency bands.

We found that existing fits to the differential num-
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Figure 8. Predicted CMB Poisson power from unresolved radio point sources as a function of the minimum flux, Scut, at which point
sources can be resolved and excised. The model from this paper (“This work”) and the model from de Zotti et al. (2005) are shown by the
red circles and blue triangles, respectively, normalized by the model from T11. The red shaded bands with the dashed outlines show the
range of the predicted Poisson power when the flat+inverted 5 GHz differential number count slope kf (see Eqn. 1) is varied over its 67%
confidence interval (when fit to our data and that in T11). The grey shaded bands show the range of predicted Poisson power including
both the aforementioned variation in kf as well as the variation of the 1.4-5 GHz spectral indices over the 67% conditional confidence
intervals in the mean of the inverted spectral index distributions (see Figure 4 and Table 1). At frequencies where the Poisson power from
infrared sources is comparable or larger than that from radio sources we have included either a black cross or black arrows (when the T11
normalized values do not fit within the plot range). In both the top and bottom panels, the millimeter source Poisson power dominates
the radio source power for higher frequencies than those shown but is highly sub-dominant for all but the highest shown frequency panels.
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Figure 9. CMB power spectra in the four lowest-frequency Planck channels. The Poisson contribution to the power from unresolved point
sources is shown for three different values of Scut using both the updated 5 GHz number count model and spectral index distributions
(“This work”) and the model from de Zotti et al. (2005). The line widths for our model (“This work”) denote the prediction range when
kf is varied over its 67% confidence interval. The T11 model predictions are always within the line widths of our model. The black line
and grey shading show the TT CMB power spectrum and expected errors from pixel noise and beam smearing. The orange shaded band
shows the 95% credible intervals for the Poisson contribution from the sources in the NOAO DFS catalogue and assuming a power-law
(“PL”) SED model with Scut = 0.4 Jy.
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ber counts of 5 GHz flat and inverted spectrum sources
must have a shallower slope for fluxes less ∼ 100 mJy
in order to be consistent with our catalogue. We also
found that the distribution of 1.4-5 GHz spectral in-
dices of sources with 5 GHz fluxes less than 100 mJy is
skewed towards larger values than the distributions for
higher flux sources. Taken together these changes to the
5 GHz source counts imply increased differential counts
when the fluxes are extrapolated to higher frequencies
and therefore increases in the predicted level of Poisson
power from unresolved point sources in CMB measure-
ments.

The quantitative predictions of high-frequency num-
ber counts depend on the choice of SED model for ex-
trapolating the measured 5 GHz fluxes. And the un-
certainties in the predicted high-frequency counts de-
pend on the prior constraints on SED model parame-
ters given a choice of SED model. Our main results
assume a physically-motivated SED model (from Tucci
et al. 2011) but we also investigated a simple power-law
SED model to assess the dependence of our predictions
on SED modeling uncertainties. In general we found that
propagating the uncertainties from both the limited size
of our catalogue and two unknown SED model parame-
ters can lead to high frequency prediction uncertainties
that are much larger than the differences between the
predictions of competing SED models. However, we have
argued that systematic offsets in the high-frequency pre-
dictions may persist even when the prediction uncertain-
ties are large so that the predictions calibrated against
our catalogue will be important considerations for ana-
lyzing CMB experiments. As one example we find that if
the four lowest-frequency Planck channels are optimally
combined to constrain ns from the CMB temperature
power spectrum, the constraints are biased by less than
the size of the 1-σ uncertainties if the “wrong” point
source number count model is used to subtract the Pois-

son power. We limited our forecasts in this example to
the five lowest frequency Planck channels to avoid model-
ing other more dominant foregrounds at higher frequen-
cies. So, our forecasts are simply an illustration of the
significance of the difference between point source models
rather than predictions of the optimal Planck constraints
when all channels are considered, but we argue that our
catalogue shows that radio source models at 5 GHz are
sufficient for removing Planck Poisson power as a sys-
tematic.

We outlined methods in Appendix A for propagating
both measurement and SED model uncertainties when
extrapolating fluxes on a source-by-source basis. A rig-
orous approach to predicting the Poisson power from un-
resolved point sources in CMB observations could apply
the methods of Appendix A to a combined catalogue of
all available radio survey data at relevant frequencies.
We expect that significant constraints on the uncertain
SED model parameters could be imposed by such a joint
analysis of available data, thereby removing a key uncer-
tainty from the present work while also providing use-
ful physical parameterizations of the radio Poisson fore-
ground (as used in Paoletti et al. 2011). However, we
leave this for future investigations.
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APPENDIX

ERROR PROPAGATION FOR EXTRAPOLATED FLUXES

For a given SED model S̄(ν,θ) with parameters θ, we assume a Log-normal likelihood for the observed fluxes of the
ith object in the catalogue. We choose a Log-normal likelihood because it has strictly positive support and becomes
nearly symmetric about the mean when the flux errors are small or the flux is large.

To propagate our uncertainty in the measured fluxes and SED parameters to the extrapolated fluxes, we compute
the marginal posterior distribution for the extrapolated flux,

P (Sν |Ŝi) =

∫
dθ P (Sν |θ)P (θ|Ŝi). (A1)

The first term gives a delta function, P (Sν |θ) = δD(Sν− S̄(ν,θ)), which fixes one of the SED parameters as a function
of the remaining SED parameters and the given value of Sν . For a power-law SED, the delta function effectively sets

α = ln
(
Sν
S0

)
/ ln

(
ν
ν0

)
(or S0 = S0(Sν , α)). The marginalization in eq. A1 then becomes,

P (Sν |Ŝi) ∝
1

Sν ln(ν/ν0)

∫
dS0 P (Ŝi|S0, α(S0, Sν))P (S0), (A2)

where the coefficient in front of the integral comes from the transformation of variables in the delta function. We
assume a conjugate log-normal prior for S0 with mean µS0 and standard deviation σS0 .

Performing the integration over S0, the final expression for the marginal posterior for the extrapolated flux of an
individual source for a power-law SED is,

P (Sν |Ŝi) =
1

ASν
S
αSν
ν exp

[
−1

2

(ln(Sν)− µSν )
2

σ2
Sν

]
(A3)
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where, if we assume ν0 = 1.4 GHz,

x5 ≡
ln(5/ν0)

ln(ν/ν0)
, (A4)

and with σ1,5 ≡ σS1.4,5/S1.4,5,

µSν ≡ x5

(σ2
S0

+ σ2
1) ln(S5) + (x5 − 1)σ2

S0
ln(S1)

x2
5(σ2

S0
+ σ2

1)
, (A5)

σSν ≡
σ2

1σ
2
5 + σ2

S0
((x5 − 1)2σ2

1 + σ2
5)

x2
5(σ2

S0
+ σ2

1)
, (A6)

αSν ≡ −1 +
µS0

(x5 − 1)x5σ
2
1

σ2
1σ

2
5 + σ2

S0
((x5 − 1)2σ2

1 + σ2
5)
, (A7)

and,

ASν ≡
√

2πσ2
Sν

exp

[
1

2
(1 + αSν )22µSν + (1 + αSν )σ2

Sν

]
. (A8)

We then estimate the mean differential number counts by summing over the (normalized) posteriors in bins in flux,

dNk(> S)

dS
∆Sk ≈

Nsources∑
i=1

∫ Smax,k

Smin,k

dS P (Sν |Ŝi)

≡
Nsources∑
i=1

pik, (A9)

where ∆Sk ≡ Smax,k − Smin,k and k = 1, . . . , Nbins indexes bins in S.
The Poisson contribution to the CMB power spectrum can be written as,

C`(ν) =

Nsources∑
i=1

∫ Scut

0

dS S2 P (Sν |Ŝi)

=

Nsources∑
i=1

×
√
π

2

σSν
ASν

exp

[
1

2
(αSν + 3)((αSν + 3)σ2

Sν + 2µSν )

]
×

(
1− Erf

[
(αSν + 3)σ2

Sν
+ µSν − ln(Scut)√
2σ2

Sν

])
, (A10)

where the index i in the final equality is implicit in all the flux posterior parameters and “Erf” denotes the error
function.

NOAO DFS CATALGOUE

A random sub-sample of the catalogue of 359 sources in the NOAO DFS matched at 1.4 and 5 GHz is shown in
Table 5. The spectral index values in the final column are derived from columns 3 and 5 via the relation α1.4−5 ≡
log(S5/S1.4)/ log(5/1.4). The full catalogue is available for download from the VizieR database.
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